Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(19)2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37833954

RESUMO

Acute hepatitis (AH) is a common liver disease with an increasing number of patients each year, requiring the development of new treatments. Hence, our work aimed to evaluate the therapeutic effect of Oryza sativa L. indica (purple rice) seed coat on concanavalin A (ConA)-induced AH and further reveal its potential mechanisms. Purple rice seed coat extract (PRE) was extracted with hydrochloric acid ethanol and analyzed through a widely targeted components method. We evaluated the effects of PRE on AH through histopathological examination, liver function, gut microbiota composition, and the intestinal barrier. The potential targets of PRE on AH were predicted by bioinformatics. Western blotting, terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling assay (TUNEL) staining, and corresponding kits were used to investigate PRE effects on predicting targets and associated signaling pathways in AH mice. In AH model mice, PRE treatment increased transformed mouse 3T3 cell double minute 2 (MDM2) expression to inhibit apoptosis; it also markedly downregulated protein kinase C alpha (PKCα), prostaglandin-endoperoxide synthase 1 (PTGS1), and mitogen-activated protein kinase 1 (MAPK1) activity to alleviate inflammation. Thus, PRE treatment also recovered the intestinal barrier, decreased the lipopolysaccharide (LPS) levels of plasma and the liver, enhanced liver function, and improved the composition of intestinal microbiota. In general, PRE targeting MDM2, PKCα, MAPK1, and PTGS1 ameliorated ConA-induced AH by attenuating inflammation and apoptosis, restoring the intestinal barrier, enhancing the liver function, and improving the gut microbiota, which revealed that the purple rice seed coat might hold possibilities as a therapeutic option for AH.


Assuntos
Hepatite , Oryza , Humanos , Animais , Camundongos , Oryza/metabolismo , Concanavalina A/toxicidade , Concanavalina A/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase C-alfa/metabolismo , Hepatite/tratamento farmacológico , Hepatite/etiologia , Hepatite/metabolismo , Transdução de Sinais , Doença Aguda , Inflamação , Proteínas Proto-Oncogênicas c-mdm2/metabolismo
2.
Int J Mol Sci ; 24(18)2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37762652

RESUMO

The mammary gland undergoes intensive remodeling during the lactation cycle, and the involution process of mammary gland contains extensive epithelial cells involved in the process of autophagy. Our studies of mice mammary glands suggest that miR-30a-3p expression was low during involution compared with its high expression in the mammary glands of lactating mice. Then, we revealed that miR-30a-3p negatively regulated autophagy by autophagy related 12 (Atg12) in mouse mammary gland epithelial cells (MMECs). Restoring ATG12, knocking down autophagy related 5 (Atg5), starvation, and Rapamycin were used to further confirm this conclusion. Overexpression of miR-30a-3p inhibited autophagy and altered mammary structure in the involution of the mammary glands of mice, which was indicative of alteration in mammary remodeling. Taken together, these results elucidated the molecular mechanisms of miR-30a-3p as a key induction mediator of autophagy by targeting Atg12 within the transition period between lactation and involution in mammary glands.


Assuntos
Autofagia , Glândulas Mamárias Animais , MicroRNAs , Animais , Feminino , Camundongos , Autofagia/genética , Proteína 5 Relacionada à Autofagia , Células Epiteliais , Lactação/genética , MicroRNAs/genética , Glândulas Mamárias Animais/crescimento & desenvolvimento , Glândulas Mamárias Animais/metabolismo
3.
Oncol Lett ; 25(5): 210, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37123027

RESUMO

The diagnosis and treatment of cancer of unknown primary site (CUP) present with difficulties and produce a poor prognosis. The current study presents the case of a patient with CUP in the mandibular region was treated with docetaxel and lobaplatin chemotherapy, and vascular embolization of the tumor. The tumor size was markedly reduced and the patient's quality of life improved following radiotherapy. The present case report is accompanied by a discussion of the literature to contextualize the treatment regimen for patients with CUP. These findings will support current treatment practices, inform oncologists and benefit patients with cancer.

4.
J Ethnopharmacol ; 307: 116232, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-36764561

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Elsholtzia bodinieri Vaniot, perennial herbs, a traditional Yunnan Chinese herbal medicine. Its whole herb can be used as commonly used herbs to cure fever, headache, inflammation, indigestion etc., and its tender tip can also be used as tea in Yunnan of China. However, the protective mechanism of Elsholtzia bodinieri Vaniot on acute lung injury (ALI) still needs to be explored. AIM OF STUDY: ALI is characterized by acute respiratory inflammation, which remains a significant source of morbidity and mortality. The current study with the aim of determining the therapeutic the efficacy of E. bodinieri Vaniot on lipopolysaccharide-induced ALI, moreover uncovered the underlying gene-regulated framework, so E. bodinieri Vaniot might serve as functional food for adjuvant therapy or therapeutic agent. MATERIALS AND METHODS: These potential pharmacological targets of E. bodinieri Vaniot against ALI were analyzed by multiple bioinformatics databases. E. bodinieri Vaniot methanol extract (EBE) was obtained by ultrasonic-assisted extraction method, and detected by UHPLC-ESI-HRMS/MS. These pyroptosis, inflammation and oxidative stress associated factors were measured using ELISA assay, western blotting, and histopathological examination to assess the effects of EBE. EcoTyper and immunofluorescence staining were employed to estimate macrophage polarization states in ALI lungs tissue. RESULTS: In ALI lung tissues, EBE treatment could increase B cell leukemia/lymphoma 2 (BCL2) to inhibit pyroptosis, downregulate prostaglandin-endoperoxide synthase 2 (PTGS2) to attenuate inflammation, upregulating NAD(P)H dehydrogenase, quinone 1 (NQO1) to alleviate oxidative stress and induce macrophage polarization toward the M2 phenotype. CONCLUSION: E. bodinieri Vaniot ameliorated ALI thought regulating pyroptosis, inflammation, oxidative stress and macrophage polarization, as well as could be a promising source for therapeutic agent.


Assuntos
Lesão Pulmonar Aguda , Piroptose , Camundongos , Animais , China , Lesão Pulmonar Aguda/tratamento farmacológico , Inflamação/tratamento farmacológico , Estresse Oxidativo , Macrófagos , Lipopolissacarídeos/farmacologia , Pulmão
5.
Int J Mol Sci ; 23(24)2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36555290

RESUMO

Acute lung injury (ALI) is a clinical respiratory disease caused by various factors, which lacks effective pharmacotherapy to reduce the mortality rate. Elsholtzia bodinieri Vaniot is an annual herbaceous plant used as a traditional herbal tea and folk medicine. Here we used bioinformatic databases and software to explore and analyze the potential key genes in ALI regulated by E. bodinieri Vaniot, including B cell leukemia/lymphoma 2 (Bcl2), prostaglandin-endoperoxide synthase 2 (Ptgs2) and NAD(P)H dehydrogenase, quinone 1 (Nqo1). In an inflammatory cells model, we verified bioinformatics results, and further mechanistic analysis showed that methanol extract of E. bodinieri Vaniot (EBE) could alleviate oxidative stress by upregulating the expression of NQO1, suppress pyroptosis by upregulating the expression of BCL2, and attenuate inflammation by downregulating the expression of PTGS2. In sum, our results demonstrated that EBE treatment could alleviate oxidative stress, suppress pyroptosis and attenuate inflammation by regulating NQO1, BCL2 and PTGS2 in a cells model, and E. bodinieri Vaniot might be a promising source for functional food or as a therapeutic agent.


Assuntos
Lesão Pulmonar Aguda , Ciclo-Oxigenase 2 , Lamiaceae , NAD(P)H Desidrogenase (Quinona) , Extratos Vegetais , Proteínas Proto-Oncogênicas c-bcl-2 , Humanos , Lesão Pulmonar Aguda/etiologia , Ciclo-Oxigenase 2/genética , Inflamação/complicações , NAD(P)H Desidrogenase (Quinona)/genética , Estresse Oxidativo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Lamiaceae/química , Extratos Vegetais/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA